PLCopen’

for efficiency in automation

PLCopen®

Certified
Training

PLCopen - Promotional Committee 2

Training

Application Examples for Motion Control
Porting “Function blocks for motion control” into OOP
Version 0.99 — Release for Comments till August 31, 2022

DISCLAIMER OF WARANTIES

THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS AND MAY BE SUBJECT TO FUTURE ADDITIONS,
MODIFICATIONS, OR CORRECTIONS. PLCOPEN HEREBY DISCLAIMS ALL WARRANTIES OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE, FOR THIS DOCUMENT. IN NO EVENT WILL PLCOPEN BE RESPONSIBLE
FOR ANY LOSS OR DAMAGE ARISING OUT OR RESULTING FROM ANY DEFECT, ERROR OR
OMISSION IN THIS DOCUMENT OR FROM ANYONE’S USE OF OR RELIANCE ON THIS DOCUMENT.

Copyright © 2022 by PLCopen. All rights reserved.

Date: June 30, 2022

Total number of pages: 46

PLCopen’

for efficiency in automation

Application Example for Motion Control

The following paper is a document created within the PLCopen Promotional Committee 2 — Training.

It summarizes the results of the PLCopen Promotional Committee meetings, containing contributions of its

members as well as external sources:

Name Company

Rene Simon Hochschule Harz
Wolfgang Doll Codesys

Yves de la Broise Interval Zero
Anders Lekve Brandseth Framo

Daniel Wall Eaton

Filippo Venturi SACMI

Georg Rempfler Wyon

John Dixon ABB

Dominik Franz ABB

Klaus Bernzen Beckhoff

Saele Beltrani SACMI

Yo Takahashi Mitsubishi Electric
Juliane Fischer Technische Universitat Miinchen
Eelco van der Wal PLCopen

Change Status L.ist:

Version | Date Change comment

number

V0.1 Sept 8, 2021 First version by Juliane Fischer, based on the video with Yves de la
Broise.

V 0.la Sept 10, 2021 | Discussed in the webmeeting & commented

V0.2 Sept 23 As result of the webmeeting Sept. 22. First doc version with template

V0.3 Oct. 6, 2021 As a result of the webmeeting on Oct. 6

V0.4 Dec. 17,2021 | Adding draft of the Axis interface

V 0.5 Feb. 11, 2022 | Adding the OO example for warehousing

Vv 0.51 April 20, 2022 | Intro reworked and discussed during the webmeeting

V 0.52 May 4, 2022 Open issue’s introduction resolved.

V 0.53 May 19, 2022 | After webmeeting, adding multi-axes definitions and inclusion of 3
example.

V 0.54 June 15, 2022 | As result from the input from Yves, adding of Part 4 and the webmeeting

V 0.55 June 29, 2022 | With input from Juliane Fischer and webmeeting

Vv 0.99 June 30, 2022 | Published as Release for Comments till August 31, 2022

TC2 Training — Application Example for Motion Control

V0.99

© PLCopen (2022)

June 30, 2022 page 2/46

PLCopen’

for efficiency in automation

Contents
1 INTRODUCTION TO THIS DOCUMENT ..ottt svrae e 6
1.1. GOALS OF THIS WORKING GROUPvvvviiiiieiiiiiiitrtieiiseeessssitsbesesssesssssssssssesssssssssssssssssssssessssins 6
2 ELEMENTS OF THE OOP MOTION CONTROL LIBRARY ...ovoiiiiiiieeiiitiee e 7
2 R 000 1Y 11V, 7 N o 1 T 7
2.2. INTERFACE AXIS DEFINITION....uuttteiiiuteeeeiiitreeeeiisteeessissasesssasseseesassssssssssssssssssssssessssssseessnnes 7
3 COMMAND INTERFACE DEFINITIONS......ccotii ettt 10
3.1, MC_COMMAND _REFottt sttt sttt snae s 10
I = ¥ i = 00 1LY - N o 2 10
TNt T (] 0 1= o €[OOSR 10
I Y [<1 1 410 Lo 10
3.3. ITFAXISCOMMAND : EXTENDS ITFCOMMANDuvviiiiiitiiieeiiiieeeesiitreeessebaeesssssbeeeessrseseeens 11
2R 700 Y Vo [0 (<o IV 1= 1 0T L 11
3.4. ITFCONTINUOUSAXISCOMMAND : EXTENDS ITFAXISCOMMANDccceeiiviieeiiiirieeeeirreneens 11
341, AQAEd PrOPEITIES ..c.eeiiiiiiiieiiei ettt bbbttt n e 11
3.5. ITFSYNCHRONIZEDAXISCOMMAND : EXTENDS ITFAXISCOMMANDcccvvvreiiirriieeeiirreneenns 11
3.5. 1. ACAEd PrOPEITIESooiiiiiiiieiieiete ettt bbbttt bbbt 11
4 ITFCAMTABLE INTERFACE DEFINITION ...cccviiiiiiii et 12
A1, IMETHODS ... oo 12
5 ITFAXIS INTERFACE DEFINITION ...ttt 13
ST T = N0 TSR 13
I o =T0] = o T =TSO 14
LI N Yot (1 =Y IV Z 1 V1< 14
I 1 - | 111 SO 14
RS T |V, [= T o 14
TG T0 R O 1 (o | IR 14
5.3.2. SINGIE AXIS IMOTION ...ttt bbbt 17
5.3.3. IMUIIFAXES IMOLION ..ottt eb e et e e eb e e s bt e e s ba e e sabae e ebeeeanns 21
6 WAREHOUSING EXAMPLE ...ttt 24
6.1. APPLICATION DESCRIPTION .1ttuiiieiiiiiiiurireieeeeesesiiistsseeesessssisssssssesssessssissssssesesssessssssssrssensees 24
6.2. FIRST PROGRAMMING EXAMPLE (USING FBS FROM PART 1).....cccioiiiiiiiiiienienie s 26
(SR T W 11 NI n] VN =YY Y 27
6.4. CONVERSIONTO OOP ...ttt e r e e e e s s sb b aaee s 27
T LABELING EXAMPLE ...ttt ettt ettt s e baa e e e s aaaee s 30
% T N~ I (07N 1 (0] 0 =f {0 2= 1] 30
7.2. PROGRAMMING EXAMPLE .. .uttiiiiiiiiiiiitirreeteeessssissbsreresesesssasbsbesesssessssssssbsrassssssssssssssrsssnsses 30
7.3. CONVERSIONTO OOP ...ttt r e e e s e s s sb b baaee e s 31
8 EXAMPLE WITH CAM AND GEAR ...t 34
8.1. APPLICATION DESCRIPTION .utvviiieeiiiiiitrtreeeteeesssssssssseresssssssssssssssesssessssissssssesesssssssssssssssessses 34
8.2. CLASSICAL PROGRAMMING EXAMPLE ..uvviiiiiiiiiiiiititeiiee e e s s seibbbetes s s e s s s s sbabares s s s s s s s sssasabaaenseas 34
8.3. CONVERSIONTO OOP ... ittt e e e e e e e s s s b b baaee e s 35
APPENDIX 1: PORTING “FUNCTIONS BLOCKS FOR MOTION CONTROL: PART 4-
COORDINATED MOTION” INTO OQOPccoveeiiieiee ettt niran e 37
TC2 Training — Application Example for Motion Control © PLCopen (2022)

Vv0.99 June 30, 2022 page 3/46

PLCopen’

for efficiency in automation

R €1 Y I 37

1.1, COORDINATE INTERFACE ...iiiiiittiieiiitteeeesiittteesssisteesssisbssesssassassssasssessssssessssassassssassresssssnses 37

1.1.1. Coordinate SYSTEM PrOPEITYoiviitirtirieeiieiieie ettt bbb 37

1.1.2. Coordinate transformMationcceciiiiiiiiiciiie e 37

1.2. SHORT OVERVIEW OF THE FUNCTION BLOCKS OF PART 4 ..eeviiieiiii ittt 37

2 COMMAND INTERFACE DEFINITIONS......ccoti ettt 38

2.1. 1ITFGROUPCOMMAND: EXTENDS ITFCOMMAND ...ovvviiiieiiiiiiiriieiiieseee s s ssisrrereee e e s s ssssssvssenesas 38

72 0 T A Vo [0 [=To 01 =1 1 (oo [38

2.2. ITFSYNCHRONIZEDGROUPCOMMAND : EXTENDS ITFGROUPCOMMANDccvvveeeiiinrrreeennnn. 38

2.2.1. AUdEd PIrOPEITIES ...cvieeieieieite ettt ettt e te et st e te e e sraesreenrennes 38

3 COORDINATE INTERFACE DEFINITIONSooiciiee ettt 39

3.1, ITFGROUPPOSITION INTERFACEiciiitiiteeiitttteeeeitteeeessibteesessasbesessssbasesssassseessasssesessssseseesas 39

T O N o (0] 0 1= 4 {[= TP RS T TP TP PRTURURPROPRPIN 39

3.2. ITFGROUPVELOCITY INTERFACEcciitviteiiittteeeiittteeessitteesesssstesessssbasesssassasessssssesesssssssseesns 39

Bi2. L. PrOPEITIES. ...ttt ettt bbbttt 39

3.3, ITFGROUPACCELERATION INTERFACE .. .ccciitvttteiiittieeesitteeeessstesessisbaseessassaesssassasessssssseesns 39

3.3 L. PrOPEITIES. ...ttt bbbttt bbbt 39

3.4, ITFPATH INTERFACE DEFINITION ..iiiiiiitviteeiiteeeeeiisreeeesiisseeessassesssssssssssssssssssssssssssesssssssseesas 39

0t N |V 1=1 1 T Lo 39

4 ITFGROUP INTERFACE ...ttt e ae e e 40

T 11 R 40

I w0 o] = = R 40

O T A Yox (1 =Y IRV 7= 1 11T 40

L -\ 11 SO 40

O T I - 1) (0] PR 40

T Y/ [= ST o 1S PR 41

T TR I - 1) (0] R 41

O T O o | | (o] IR 42

TR TN |V (o] 1 o] o IR 43

N B 1 AN 1 T = V] [0 R 46

o I Yo [[T I 1Y, =11 0T R 46
TC2 Training — Application Example for Motion Control © PLCopen (2022)

Vv0.99 June 30, 2022 page 4/46

PLCopen’

for efficiency in automation

List of figures
Figure 1: Project tree showing ENUMS, interfaces and STRUCTS of the OOP Motion Control Library .. 9

Figure 2: Interface implemented by Classes returned by an a-synchronous method.............c.ccocoviinnnne. 10
Figure 3: ENUM AXIS_STATUS defining all the possible states of an axis.........ccccovevrerenienienininnnnn. 13
Figure 4: Overview of the warehousing eXample..........cccccoiriiiiiiiiie e 24
Figure 5: First Program for warehousing eXample.........cccooiiiiiiiiine s 26
Figure 6: Timing diagram for warehousing eXample ... 27
Figure 7: Program eXample INOOPcooiiiiiiiiiiese ettt enes 28
Figure 8: Timing Diagram of warehouse example implemented in OOP with legend..............ccccocvvvnnnne. 29
Figure 9: LabElING MACNINEciiiiieie e e b ettt enes 30
Figure 10: Program example for labeling machine ..o 30
Figure 11: ~ Variable declaration part of the Main Programi..........cccceererenenenieniseee e 31
Figure 12: Implementation part of the labeling example converted in OOP and implemented with a state

MAChINE TOr ACH OF T8 2 AXES.....iiuieeieieee bbbttt sbenreereas 32
Figure 13: Timing diagram of labeling example with 1egend...........cccoooriiiiiiiiiicie 33
Figure 14: Classical FBD implementation of a synchronization example with three drives.................... 34
Figure 15: Variable declaration part of the synchronization example’s main program...............cccocveneen. 35
Figure 16: Implementation of the three drives (each with a state machine in ST)cccccoveviiieniiiinene. 36
TC2 Training — Application Example for Motion Control © PLCopen (2022)

Vv0.99 June 30, 2022 page 5/46

PLCopen’

for efficiency in automation

1 Introduction to this document

With the published specification “Function blocks for motion control (formerly Part 1 and Part 2)”, the
PLCopen Task Force Motion Control provided a set of standardized Function Blocks to ease modularization
and reuse of motion control software. This document presents an object-oriented implementation of the
motion control specification, which can be combined with the set of procedural standard Function Blocks
(FBs). The general design of the proposed object-oriented (OO) implementation is a single Axis Class
implementing different functions as Methods instead of formerly used multiple FBs. A benefit of the proposed
software design is the compatibility with procedural motion control FBs: The standard Motion Control
libraries can call the Axis Class internally to combine both approaches in one application. Thus, the user of
the OO implementation needs not to be familiar with the detailed OO principles or language elements for
using it.

As common in object-oriented programming (OOP), an interface is used to define the motion standard since
it describes how a class is presented to the outside (sometimes including the behavior). More precisely, an
interface is the definition of the functionalities that a class may implement. The class is the actual
implementation of the defined functionalities, including vendor-specific aspects. Correspondingly, this
document standardizes a motion interface. For using this standard, an axis class needs to be implemented,
which follows (“implements™) this standardized motion interface. In short: the interface defines the
functionalities, but not how they are implemented (their content), which is done vendor-specific in an axis
class.

1.1. Goals of this working group

In this document we use three application examples:

(1) A labeling example where a label is put on a product on a belt
(2) A warehousing example, where a pallet is moved out of a warehouse shelve
(3) A combination of multiple axes FBs: CamlIn and Gearin.

Via these examples it is shown how the standardized FBs from the PLCopen motion control specification
(https://www.plcopen.org/technical-activities/motion-control) can be ported to OOP by using a standardized
interface itfAxis as introduced below. To apply the standard in a vendor-specific implementation, the
programmer develops a class, which implements the interfaces itfAxis and, thus, has all the functionalities
standardized in itfAxis without implementation. Then the actual, vendor-specific implementation of these
functionalities is programmed.

The advantage of the proposed interface itfAxis is that one can decide how to program: on the one hand, the
standard FBs can be used, and they can internally call the itfAxis methods. On the other hand, it is possible to
program in OOP by using the defined methods to start a new command, get the current status of an axis, and
update or abort a command.

The details on the proposed interface and the contained methods as well as several user-defined data types are
introduced below.

This document focuses on the motion control part of the axes only. In real projects, the axis class will have
many other properties and methods for communication, hardware configuration, and additional aspects. For
simplicity, these are not explained in this document.

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 6/46

PLCopen’

for efficiency in automation

2 Elements of the OOP Motion Control Library

The starting point for porting the motion FBs to OOP is the definition of the interface itfAxis as standardization
for the axis class as a representation of the PLCopen motion control specification. Initially, several ENUMS
are defined, which are used inside the interface itfAxis (cf. Figure 1: top).

2.1. Commands

To represent a previously made command, an itfCommand interface and its various extensions for motion
control are defined. The itfCommand contains “Getter Functions” to query the status of the command. To be
compliant with the IEC 61131-3 standard, the “Getter Functions” are implemented as methods. (Note: the
actual values can be implemented as properties, which can be more compact compared to “Getter Functions”
(methods). Thus, they are simpler to use. Only a Get-Method of these properties is required for reading the
current values of the linked variables.) An Abort method is defined for canceling a command that is running.
In preparation for future control strategies (for example, event-driven programming as defined by the IEC
61499), the method Wait is defined. In case of event-driven programming, synchronous calls would be
possible, and this command would enable waiting on a command to finish or time-out. It is not included in
the current motion control specification but represents an extension that could be used in event-driven
architectures for synchronous calls.

The itfAxisCommand interface extends itfCommand by adding an Update method that can be called when the
inputs of a move change. This mimics the functionality of the ContinuousUpdate input of classic FBs. It is
used to update the call parameters (position, acceleration, etc.) of a command like MoveAbsolute.

Overall, the defined commands (like itfCommand, itfAxisCommand, etc.) are generic and can be used with
every API, Application Programming Interface (absolute move, relative move, velocity move, halt or stop).
This allows to use schedulers, error handlers and the like.

2.2. Interface Axis definition

The itfAxis interface itself is organized in different sub-folders to group the functionalities according to their
categories (cf. Figure 1, middle). These categories correspond to the FBs from the motion control
specification. The first folder is the folder ActualValues, which contains the ActualPosition, ActualTorque
and ActualVelocity “Getter Function” to query the actual status of the axis.

In the second folder Control, nine methods are contained for the axis control such as Power, Reset and
SetPosition. Using a Stop / Gear / Cam command, the axis is moved to a specific state: either Stop or
Synchronized_Motion. Since the setting of the Execute to FALSE does not make sense in OOP, a Release
Method is added to return the axis to the StandStill state.

The third and fourth folders contain methods for Motion — for example, the method MoveAbsolute, for an
absolute movement of an axis. The method comprises input parameters but no outputs. Its status is returned
with a return variable of the Class-type itfAxisCommand, which contains variables related to motion and a
reference number of the command. The user can adapt this interface to include all additional, required
information. When a method like MoveAbsolute is called, the command status is returned. Simple programs
can ignore the return value and use the status of the axis instead to check when the triggered movement is
completed (axis returns to the status Standstill). The return value enables to follow up on the command by
using the methods of the itfAxisCommand interface.

Finally, the folder Status contains 13 properties (see Chapter 5.2.2 Status) to observe the state of the axis. The
motion control specification defines four FBs for this, namely, MC_ReadStatus, MC_ReadAxislnfo,
MC_ReadAxisError, and MC_ReadMotionState. The return values of these standard FBs are turned into

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 7/46

PLCopen’

for efficiency in automation

properties such as the property Status. In OOP it is not practical to have all axis states (e.g., standstill, error,
stop, etc.) as individual Boolean properties. For reasons of simpler manipulation, a property of an ENUM-
type is defined instead. All possible states of the axis are merged in the ENUM AXIS_STATUS (cf. Fig. 1 and
Chapter 5.1 ENUMS). The property Status returns a variable of the ENUM AXIS_STATUS type. The property
MotionStatus is defined in a similar way.

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 8/46

PLCopen’

for efficiency in automation

=5 OooMotionConirolldrary
=/-I2) Part1Definition
=2 Enums

@ AXIS_DIRECTION (ENUM)
¥ AXIS_STATUS (ENUM)

¢ MC_BUFFER_MODE (ENUM)
¢ MC_COMBINE_MODE (ENUM)
@ MC_Direction (ENUM)

¢ MC_Error (ENUM)

¢ MC_ExecutionMode (ENUM)
@ MC_Source (ENUM)

¢ MC_StartMode (ENUM)

¢ MC_SYNC_MODE (ENUM)
¢ MOTION_STATUS (ENUM)

+-12J) GlobalConstants
=2 Interfaces

=0 jtfAxis
+- Actualvalues
+-{) Control
+ -2 MultifxesMotion
+-1) SingleAxisMotion
+-|)) Status
=0 itfAxisCommand
Iﬁ% Update
=0 itfCamTable
lﬁ% Select
=0 itfiCommand
ijﬁ Abort
T Wait
+ 53 Active
s 5; Busy
+ 53 Command
+ 53 CommandAborted
% SB Done
+ 52 Error
+ 53 Errorld
=0 itfiContinuousAxisCommand

+- 51 velocity
=2 itfSynchronized AxisCommand

+ SB InSync

=) Structs

¢ MC_CAM_REF (STRUCT)
@ MC_COMMAND_REF (STRUCT)

) Types

Figure 1: Project tree showing ENUMS, interfaces and STRUCTS of the OOP Motion Control Library

TC2 Training — Application Example for Motion Control
June 30, 2022

V0.99

© PLCopen (2022)
page 9/46

PLCopen’

for efficiency in automation

3 Command interface definitions

3.1. MC_COMMAND_REF
The definition of the STRUCT is vendor-specific.

3.2. Base itfCommand

== itfiCommand
Iﬁa Abart

A Wait
T E; Active
™. E; Busy
E? E; Command
& E; CommandAborted
£ E; Done
+ E; Error
& E; Errorld

Figure 2: Interface implemented by Classes returned by an a-synchronous method

This is the interface for any vendor implemented Command class. This class contains the status of a running
command and is not limited to the Motion Control.

3.2.1. Properties

Name Access Type

Command Read MC _COMMAND REF
Done Read BOOL

Busy Read BOOL

Active Read BOOL
CommandAborted | Read BOOL

Error Read BOOL

Errorld Read MC ERROR

For a description of the properties, see PLCopen Motion Control Part 1.
The properties InVelocity and InSync are extensions of this base type, see Chapter 3.4 and 3.5 hereunder.

3.2.2. Methods

The interface does not show it, but the Command classes will implement an internal Get method that will
update the properties.

METHOD Abort : MC_ERROR

VAR_INPUT
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 10/46

PLCopen’

for efficiency in automation

The Method Wait hereunder is a placeholder for IEC-61499:
METHOD Wait : MC_ERROR
VAR_INPUT
Timeout : TIME;
AbortOnTimeout : BOOL;
END_VAR
END_METHOD

3.3. itfAxisCommand : Extends itfCommand
Extension of itfCommand for Axis motion methods.
3.3.1. Added Methods
METHOD Update : MC_ERROR

VAR_INPUT
Position : REAL;
Velocity : REAL;
EndVelocity : REAL;
Acceleration : REAL;
Deceleration : REAL;
Jerk : REAL;

END_VAR

END_METHOD

3.4. itfContinuousAxisCommand : Extends itfAxisCommand
For moves that set the axis in ContinuousMotion state.
3.4.1. Added Properties

Name Access Type
InVelocity Read BOOL

3.5. itfSynchronizedAxisCommand : Extends itfAxisCommand
For moves that set the axis in SynchronizedMotion state.
3.5.1. Added Properties

Name Access Type
InSync Read BOOL
TC2 Training — Application Example for Motion Control © PLCopen (2022)

Vv0.99 June 30, 2022 page 11/46

PLCopen’

for efficiency in automation

4 itfCamTable interface definition

4.1. Methods
METHOD Select : itfCommand

VAR_INPUT
Periodic : BOOL;
MasterAbsolute: BOOL;
SlaveAbsolute: BOOL;
CamTable: MC_CAM_REF;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 12/46

PLCopen’

for efficiency in automation

5 itfAxis interface definition

5.1. ENUMs

=0 itfAxis iﬁ itfAxis.Reset

TYPE AXIS_STATUS :
(
ErrorStop := 0,
Disabled
Stopping
Homing := 3,

Standstill := 4,

DiscreteMotion := 3,

ContinuousMotion :

SynchronizedMotion := 7

s
END_TYPE

¢ AXIS_STATUS X

Figure 3: ENUM AXIS_STATUS defining all the possible states of an axis

No.

MC_AXIS_STATUS

mcErrorStop

mcDisabled

mcStandstill

mcHoming

mcStopping

mcDiscreteMotion

mcContinuousMotion

mcSynchronizedMotion

No.

MC_MOTION_STATUS

mcConstantVelocity

mcAccelerating

mcDecelerating

No.

MC_AXIS_DIRECTION

mcDirectionPositive

mcDirectionNegative

For a description of the status, see PLCopen Motion Control Part 1.

TC2 Training — Application Example for Motion Control

V0.99

June 30, 2022

© PLCopen (2022)
page 13/46

PLCopen’

for efficiency in automation

5.2. Properties
5.2.1. Actual values

Name Access | Type

ActualPosition Read |REAL
ActualTorque Read |REAL
ActualVelocity Read |REAL

For a description of the properties, see PLCopen Motion Control Part 1.

5.2.2. Status
Name Access | Type
AxisWarning Read |BOOL
CommunicationReady |Read |BOOL
Direction Read |MC AXIS DIRECTION
Errorld Read |MC ERROR
HomeAbsSwitch Read |BOOL
IsHomed Read |BOOL
LimitSwitchNegative |Read |BOOL
LimitSwitchPositive |Read |BOOL
MotionStatus Read |MC MOTION STATUS
PowerOn Read |BOOL
ReadyForPowerOn Read |BOOL
Simulation Read |BOOL
Status Read |MC AXIS STATUS

For a description of the properties, see PLCopen Motion Control Part 1.

5.3. Methods
5.3.1. Control
METHOD Power : itfCommand

VAR_INPUT
Enable : BOOL;
EnablePositive : BOOL;
EnableNegative : BOOL;
END_VAR

END_METHOD

METHOD ReadBoolParameter : MC_ERROR

VAR_INPUT
ParameterNumber : INT;
END VAR

TC2 Training — Application Example for Motion Control
Vv0.99 June 30, 2022

© PLCopen (2022)
page 14/46

PLCopen’

for efficiency in automation

VAR _OUTPUT
Value : BOOL;
END_VAR

END_METHOD
METHOD ReadParameter : MC_ERROR

VAR_INPUT
ParameterNumber : INT;
END_VAR

VAR _OUTPUT
Value : INT;
END_VAR

END_METHOD

METHOD Release : MC_ERROR

VAR_INPUT
END_VAR

END_METHOD

METHOD Reset : MC_ERROR

VAR_INPUT
END_VAR

END_METHOD

METHOD SetOverride : MC_ERROR

VAR_INPUT
VelFactor : REAL;
AccFactor : REAL;
JerkFactor : REAL;
END_VAR

END_METHOD

METHOD SetPosition : itfCommand

VAR_INPUT

Position : REAL;

Relative : BOOL;

ExecutionMode : MC_EXECUTION_MODE;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control
V0.99 June 30, 2022

© PLCopen (2022)
page 15/46

PLCopen’

for efficiency in automation

METHOD WriteBoolParameter: MC_ERROR

VAR_INPUT
ParameterNumber : INT;
Value : BOOL;
END_VAR

END_METHOD

METHOD WriteParameter: MC_ERROR

VAR_INPUT
ParameterNumber : INT;
Value : REAL;
END_VAR

END_METHOD

METHOD DigitalCamSwitch : itfCommand

VAR_INPUT
Switches : MC_CAMSWITCH_REF;
Outputs : MC_OUTPUT_REF;
TrackOptions : MC_TRACK_REF;
Enable : BOOL;
EnableMask : DWORD;
ValueSource : MC_SOURCE;
END_VAR

END_METHOD

METHOD TouchProbe : itfCommand

VAR_INPUT
Triggerinput : MC_TRIGGER_REF;
WindowOnly : BOOL;
FirstPosition : REAL;
LastPosition : REAL,;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control
V0.99 June 30, 2022

© PLCopen (2022)
page 16/46

PLCopen’

for efficiency in automation

METHOD AbortTrigger : itfCommand

VAR_INPUT
Triggerinput : MC_TRIGGER_REF;
END_VAR

END_METHOD

5.3.2. Single Axis Motion
METHOD Home : itfAxisCommand

VAR_INPUT

Position : REAL;

BufferMode : MC_BUFFER_MODE;
END_ VAR

END_METHOD

METHOD Stop : itfAxisCommand
VAR_INPUT

Deceleration : REAL;
Jerk : REAL;
END_VAR

END_METHOD

METHOD Halt : itfAxisCommand

VAR_INPUT

Deceleration : REAL;

Jerk : REAL;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control
V0.99 June 30, 2022

© PLCopen (2022)
page 17/46

PLCopen’

for efficiency in automation

METHOD MoveAbsolute : itfAxisCommand

VAR_INPUT

Position : REAL;

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

Direction : MC_DIRECTION,;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

METHOD MoveRelative : itfAxisCommand

VAR_INPUT

Distance : REAL;

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

METHOD MoveAdditive : itfAxisCommand

VAR_INPUT

Distance : REAL;

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control
V0.99 June 30, 2022

© PLCopen (2022)
page 18/46

PLCopen’

for efficiency in automation

METHOD MoveSuperimposed : itfAxisCommand

VAR_INPUT
Distance : REAL;
VelocityDiff : REAL,;
Acceleration : REAL;
Deceleration : REAL;
Jerk : REAL;
END_VAR

END_METHOD

METHOD HaltSuperimposed : itfAxisCommand

VAR_INPUT
Deceleration : REAL;
Jerk : REAL;
END_VAR

END_METHOD

METHOD MoveVelocity : itfContinousAxisCommand

VAR_INPUT

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

METHOD MoveContinuousAbsolute : itfContinousAxisCommand

VAR_INPUT

Position : REAL;

EndVelocity : REAL;

Velocity : REAL,;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

Direction : MC_DIRECTION;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 19/46

PLCopen’

for efficiency in automation

METHOD MoveContinuousRelative : itfContinousAxisCommand

VAR_INPUT

Distance : REAL;

EndVelocity : REAL;

Velocity : REAL,;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

Direction : MC_DIRECTION;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

METHOD TorqueControl : itfAxisCommand

VAR _INPUT

Torque : REAL,

TorqueRamp : REAL,

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

Direction : MC_DIRECTION,;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

METHOD PositionProfile : itfCommand

VAR_INPUT

TimeScale : REAL;

PositionScale : REAL;

Offset : REAL;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control
V0.99 June 30, 2022

© PLCopen (2022)
page 20/46

PLCopen’

for efficiency in automation

METHOD VelocityProfile : itftCommand

VAR_INPUT

TimeScale : REAL;

VelocityScale : REAL;

Offset : REAL;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

METHOD AccelerationProfile : itfCommand

VAR_INPUT

TimeScale : REAL;

AccelerationScale : REAL;

Offset : REAL;

BufferMode : MC_BUFFER_MODE;
END_ VAR

END_METHOD

5.3.3. Multi-Axes Motion
METHOD Camin : itfSynchronizedCommand

VAR_INPUT
Master : itfAxis;
MasterOffset : REAL;
SlaveOffset : REAL;
MasterScaling : REAL,;
SlaveScaling : REAL;
MasterStartDistance : REAL;
MasterSyncPosition : REAL;
StartMode : MC_START_MODE;
MasterValueSource : MC_SOURCE;
CamTable : itfCamTable;
BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control
V0.99 June 30, 2022

© PLCopen (2022)
page 21/46

PLCopen’

for efficiency in automation

METHOD Gearln : itfSynchronizedCommand

VAR_INPUT
Master : itfAXxis;
RatioNumerator: REAL;
RatioDenominator: REAL;
MasterValueSource : MC_SOURCE;
Acceleration: REAL;
Deceleration: REAL;
Jerk: REAL;
BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

METHOD GearlnPos : itfSynchronizedCommand

VAR_INPUT
Master : itfAXis;
RatioNumerator: REAL;
RatioDenominator: REAL;
MasterValueSource : MC_SOURCE;
MasterSyncPosition: REAL;
SlaveSyncPosition: REAL,;
SyncMode: MC_SYNC_MODE;
MasterStartDistance: REAL;
Velocity: REAL,;
Acceleration: REAL;
Deceleration: REAL;
Jerk: REAL;
BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

METHOD PhasingAbsolute : itfSynchronizedCommand

VAR_INPUT

Master : itfAXis;

PhaseShift: REAL;

Velocity: REAL;

Acceleration: REAL;

Deceleration: REAL;

Jerk: REAL;

BufferMode : MC_BUFFER_MODE;
END_VAR

END_METHOD

TC2 Training — Application Example for Motion Control
V0.99 June 30, 2022

© PLCopen (2022)
page 22/46

PLCopen’

for efficiency in automation

METHOD PhasingRelative : itfSynchronizedCommand
VAR_INPUT

Master : itfAXis;

PhaseShift: REAL;

Velocity: REAL;

Acceleration: REAL;

Deceleration: REAL;

Jerk: REAL;

BufferMode : MC_BUFFER_MODE;

END_VAR
END_METHOD

METHOD CombineAxes : itfSynchronizedCommand
VAR_INPUT

Masterl : itfAXis;

Master2 : itfAXis;

CombineMode: MC_COMBINE_MODE;
GearRatioNumeratorM1: INT;
GearRatioDenominatorM1: INT;
GearRatioNumeratorM2: INT;
GearRatioDenominatorM2: INT;
MasterValueSourceM1: MC_SOURCE;
MasterValueSourceM2: MC_SOURCE;
BufferMode : MC_BUFFER_MODE;

END_VAR
END_METHOD

TC2 Training — Application Example for Motion Control

V0.99

June 30, 2022

© PLCopen (2022)
page 23/46

PLCopen’

for efficiency in automation

6 Warehousing example

6.1. Application description

The purpose of this application is to automatically retrieve goods from a storage cabinet with shelves. The
goods are stored in pallets that can be retrieved with a fork system.

<+ Axis_Z»

I
L T
%7 |
> 2
=
Z

Figure 4: Overview of the warehousing example

The warehouse task is to move the fork with three axes to place or take the pallet:

e Axis X moves along the floor;

e AXxis Y moves to the needed height;

e Axis Z moves the fork into the shelf to fetch the pallet.
The sequence is to move the axes X and Y to the requested position. As soon as both axes have reached this
position, the Z axis moves into the shelf under the pallet, in this example for 27000 mm. Then the Y axis lifts
the pallet for another 100 mm to lift the pallet from the shelf, so it can be moved out of the shelf and to the
required position to deliver it.

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 24/46

PLCopen’

for efficiency in automation

This example can be implemented in different ways. A straightforward approach is to use Part 1 Function
Blocks. Alternatively, a XYZ group could be defined in controllers supporting PLCopen Part 4, Coordinated
Motion, which can simplify and optimize the movements.

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 25/46

PLCopen’

for efficiency in automation

6.2.

First programming example (using FBs from Part 1)
This could be implemented in the following way by only using Function Blocks from Part 1.

Start

MoveToPalletX

MC_MoveAbsolute
Axis X AXis_ _ _ _ _ _ _ _ _ _ _ _ Ads|_
Execute Done ForkinPallet
Pos_X— position Busy
40.0— velocity Active MC_MoveRelative
—| Acceleration CommandAborted Axis_ Z—fAXs_ . ___ _ _Ads]
—| Deceleration Error Execute Done
—{ Jerk ErroriD 1000.0] position Busy [—
—{ Direction 20.0 velocity Active |—
—{ Buffermode —{ Acceleration CommandAborted [—
AN D — Deceleration Error |—
MoveToPallety | ErrorD =
— Direction
MC_MoveAbsolute —| Buffermode
Axis Y —-MXis_ . _Axis|
Execute Done
Pos_Y —| Position Busy [—
40.0 — Velocity Active |—
— Acceleration CommandAborted —
—{ Deceleration Error (—
—{ Jerk ErrorlD |—
—{ Direction
—{ Buffermode
ForkLift ForkOutWithPallet
MC_MoveRelative MC_MoveAbsolute
Axis Y —HMs— — . As] Axis_Z —MNS— — — —— ___ _AXiS|
Execute Done Execute Done ——
100.0 — Position Busy [— 0.0 — Position Busy |—
10.0 — Velocity Active — 20.0 — Velocity Active —
— Acceleration CommandAborted [— — Acceleration CommandAborted [—
— Deceleration Error (— — Deceleration Error (—
— Jerk ErrorlD — — Jerk ErrorlD —
— Direction — Direction
— Buffermode — Buffermode
MoveToDeliveryX
MC_MoveAbsolute
Axis_X A Ads_______ Abs| - AND | FEinished
Execute Done
0.0 1 position Busy (—
40.0—{ Velocity Active |—
— Acceleration CommandAborted |—
—| Deceleration Error (—
! Jerk ErroriD — MoveToDeliveryY
—{ Direction MC_MoveAbsolute
—| Buffermode Axis Y —-AXis_ . _ _ _ _ _ _ _ _ _ _ _AXs]
Execute Done
0.0— Position Busy [—
40.0— velocity Active [—
—{ Acceleration CommandAborted [—
—{ Deceleration Error [—
— Jerk ErrorlD [—
—{ Direction
— Buffermode

Figure 5: First Program for warehousing example
Note: not all the specified inputs are shown in FBs above.

TC2 Training — Application Example for Motion Control

V0.99

June 30, 2022

© PLCopen (2022)
page 26/46

PLCopen’

for efficiency in automation

6.3. Timing diagram
The following graphic shows the sequence to fetch a pallet from the storage system.

Motion MoveToPalletX
Velocity Axis X 0 MoveToDeliveryX p
MoveToPalletY
.) LiftPallet .
Velocity Axis Y o MoveToDeliveryY >
ForkinPallet
Velocity Axis Z o ForkOutWithPallet p
Signals

Start -

Finished -t

Figure 6: Timing diagram for warehousing example

6.4. Conversion to OOP

This example is now used to show the OO programming with the ST language. The programming is quite
straightforward for the PLC programmer. In the background, the standard PLCopen Motion Control library
part 1 (v2) is used. Usually, those FBs are called in a cyclic manner, which does not match so fine with the
OOP idea. If feedback is not necessary (Done, Error...) it might be OK, if the FB is not called cyclic. With
the method GetCommandStatus, there is a way to call the underlying FB (like MC_MoveAbsolute), and
with the GetCommandStatus (by internally calling MC_MoveAbsolute and other instances) the status
information (Done, Error, etc.) of the movement is returned. Based on this, the next command can be
started. The implementation of the methods is, of course, vendor-specific.

The program uses a state machine, and the different states reflect the different stages of the whole trajectory.
With the use of the variables lastCommandX, lastCommandY and lastCommandZ, the program gets very
transparent (see Figure 7: variable declaration part on top and implementation of state machine as CASE
instruction at bottom). The resulting timing diagram is depicted in Figure 8: top, including a legend at the
bottom.

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 27/46

PLCopen’

for efficiency in automation

PROGRAM WarehousingExample

VAR
Axis ¥ : itfRxis;
Axis Y : itfAxis;
Iwis 7 : itfRAwis;
state00F : INT;
lastCommandX : itfCommand:
lastCommandY : itfCommand;
lastCommandZ : itfCommand;
stepln : BOOL :=
targetPosX : REAL
targetPosY : BREAL

END_VAR

CASE state00F OF

EnablePositive: EnableNegative
EnableNegative

EnableNegative

Zxis ¥.Power (Enzble:
Zxis Y.Power(Enable:
Lxis_ Z.Power (Enable

EnablePositive:
EnablePositive

IF stepOn THEN
stateQOP := stateQOP + 10;
END_IF

Directic
, Direction:

Deceleration
Deceleration:

1, Acceleration:=0
lastCommandY := Axis Y.MoveRbsolute (Position:=targetPosY, Velocity: , Acceleration:=0,
state00P := stateQOP + 10;

0, BufferMode
» BufferMode:=]

C_BUFFER_MODE.mcRborting) ;
MC_BUFFER_MODE.mcRborting) ;

walt t le] is

IF lastCommandX.Done AND lastCommandY.Done THEN

she

lastCommandZ := Axis Z.MoveRelative(Distance: 1, Velocity 0, Rcceleration:=0, Deceleration BufferMode:=MC BUFFER MODE.mcAborting);
stateQOP := stateQOP + 10;

END_IF

ft pal i
IF lastCommandZ.Done THEN
lastCommand¥ := Axis_Y.MoveRelative (Distance:=100, Velocity:=10, Rcceleration:=0, Deceleration:=0, Jerk:=0, BufferMode:=MC BUFFER_MODE.mcAborting);
state00P := state00P +
END_IF

b p

IF lastCommandY.Done THEN
lastCommandZ := RAxis_Z.Movelbsolute (Position:=0, Velocity:=
state00P := stateC0P + 107

END_IF

0, Acceleration:=0, Deceleration: Jerk:=0, Direction:=0, BufferMode:=MC BUFFER MODE.mcRAborting);

IF lastCommandZ.Done THEN

lastCommandX := Axis X.MoveRbsclute (Position:=0, Acceleration: Deceleration: Direction: BufferMode:=MC BUFFER MODE.mcRAborting);
lastCommandY := RAxis_Y.Movelbsolute (Position . Acceleration , Deceleration: Direction: BufferMode:=MC BUFFER_MODE.mcRborting);
state00P := stateC0P + 107

END_IF

wait L.

IF lastCommandX.Done AND lastCommandY.Done THEN
stateQ0P := state0OP + 10;

END_IF

END_CASE

Figure 7: Program example in OOP

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 28/46

PLCopen’

for efficiency in automation

750.0 4

675.0 4 - LN

_ N
/ AN
/ \

A . N\
AN N\
/ N\ AN

/ N\ N
| AN
N N,

40.0 4

=

16.04

8.0

0.0+

-8.0 4

-16.0

-24.0

-32.0

-40.0

100.0 4

80.0 4

60.0 4 I

40.0 4]

|
20.0
—

0.0d

r T T T T T T T T T 1
0:00m 0:06m 0:12m 0:18m 0:24m 0:30m 0:36m 0:42m 0:48m 0:54m 1:00m

4 lr_g FAxis Group
B Axis ¥.SetPos
FH Axis ¥.SetPos
T} Axis Z.5etPos
4 7y Axis Group (1)
L Axis X.SetVelc
Axis Y.SetVelo
T} Axis Z.SetVelo
4y Axis Group (2)
B MAIN stateOOP

Figure 8: Timing Diagram of warehouse example implemented in OOP with legend

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 29/46

PLCopen’

for efficiency in automation

7 Labeling example

7.1. Application description

The task is to place a label at a particular position on a product. The application has two drives, one to feed
the product via a conveyor belt, the other to feed the labels and to place the labels on the products. The
labeling process is triggered by a position detection sensor (cf. Figure 9: top). From the detection of the
product to the start of the label movement, there is a delay depending on the velocity of the conveyor, the
position of the sensor and the position of the label on the product.

Label
Product Detection

?\

I

Sensor distance

LabelDrive

Figure 9: Labeling machine

Product
[1

<&

7.2. Programming example
This example shows a way to solve this task in the programming language FBD in Figure 10:.

<

Both axes move with the same velocity setpoint. The delay for TON is calculated from the sensor distance
and the velocity. After a labeling step, the LabelDrive stops again and waits for the next trigger, while the
conveyor continuously moves.

MC_MoveRelative
MC_MoveRelative
TON LabelDrive —-Ms5— — — — £ A
Product
. IN Q Execute Done —
Detection
PT ET— LabelLength — Position Busy {—
Velocity Active —
. Delay —| Acceleration CommandAborted —
SensorDistance —)
DIV —| Deceleration Error —
—{ Jerk ErrorlD [—
Velocity — Direction
— Buffermode
MC_MoveVelocity
MC_MoveVelocity
Conveyor {AXis_ _ _ _ _ _ _ _ _ _ _ _/ Axis |
Start — Execute InVelocity (—
Busy (—
Velocity Active —
— Acceleration CommandAborted —
—| Deceleration Error —
— Jerk ErrorlD —
—{ Direction
— Buffermode

Figure 10: Program example for labeling machine

TC2 Training — Application Example for Motion Control

V0.99

June 30, 2022

© PLCopen (2022)
page 30/46

PLCopen’

for efficiency in automation

7.3. Conversion to OOP

Using the programming language ST and the introduced OOP elements for motion control, the labeling
example is converted to OOP. Similar to the warehouse example, the standard PLCopen Motion Control
Library part 1 (v2) is used in the background and the program uses a state machine to reflect the different
states of the process. See Figure 11:Figure 7: variable declaration part and Figure 12: implementation part of
the main program with a state machine. The resulting timing diagram is depicted in Figure 13: top,

including a legend at the bottom.

PROGRAM LabelingExample
VAR

LakelDrive @ Axis;

Comveyor @ Bxis;

Lakellength : REAL := 100;
SensorDistance : REAL := 10;
Velccity : REAL := 5;
ProductDetection : BOOL := FRLSE;
DelayTimer : TON:

ConveyorState : INT := 0;
LabelDriveState : INT := 0O;

qqqqqq

ConveyorMove @ itfCommand;
LakelDriveMove : itfCommand;
END VAR

Figure 11: Variable declaration part of the main program

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 31/46

PLCopen’

for efficiency in automation

INT TO TIME(REAL TO INT(SenscrDistance * 1000 / Velocity)));

CASE ConveyorState OF

Disabled
IF Start THEN
ConveyorState := ConveyorState + |

END_IF

Conveyor. Power (Enable EnablePositive:

IF Conveyor.Status RXTS_STATUS.Standstill THEN
ConveyorState := ConveyorState + 17

END_IF

Enablelegative:=T]

2: // Wait

IF LabelDrive.Status = RXIS_STATUS.Standstill THEN
ConveyorMove onveyor.MoveVelocity (Velocity:=Velocity, Acceleration:=0, Deceleration:=0, Jerk:=0, Direction:=MC Direction.mcPositiveDirection, BufferMode:=MC BUFFER MODE.mcAborting):
ConveyorState := ConveyorState + 1;

END_IF

IF NOT Start THEN
ConveyorMove := Conveyor.Halt(Deceleration:=0, Jerk:=0, BufferMode:=MC_BUFFER_MODE.mcAborting) ;
ConveyorState := ConveyorState + 17

END_IF

nveyorMove.Done THEN

ConveyorState := ConveyorState + 17
END_IF
Conveyor. Power (Enable E, EnablePositive:=i Enablellegative:=F

IF Conveyor.Status
ConveyorState :
END_IF
END_CASE

RXIS STRTUS.Disabled THEN

CASE LabelDriveState OF
IF Start THEN
LabelDriveState := LabelDriveState + 1
END_IF
LakelDrive.Power (Enable: E, EnaklePositive:
IF LabelDrive.Status = AXIS_STATUS.Standstill THEN

E, EnableNegative:

LabelDriveState := LabelDriveState + 1
END_IF
2: // Wait for yor
IF Conveyor.Status = RXIS STATUS.Standstill THEN
LabelDriveState := LabelDrive3State + 1;
END _IF
3 r p. t
rt THEN
LabelDriveState := 57
END_IF
IF Delaylimer.Q THEN
LabelDriveMove := LabelDrive.MoveRelative (Distance:=Labellength, Velocity:=Velocity, Acceleration:=0, Deceleration:=0, Jerk:=0, BufferMode:=MC BUFFER MODE.mcRborting);
LebelDriveState := LabelDriveState + 1;
END IF
4: // Wait for label to be fered
IF LabelDriwveMove.Done AND NOT DelavIimer.Q THEN
LabelDriveState := 3;
END_IF

Conveyor.Power (Enable , EnablePositive:

IF Conveyor.S5tatus = RXIS STAIUS.Disabled THEN
LebelDriveState := 07

END _IF

EnableNegative:

END_CASE

Figure 12: Implementation part of the labeling example converted in OOP and implemented with a state
machine for each of the 2 axes

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 32/46

PLCopen’

for efficiency in automation

YT Chart ar
Start: 11:24:43.019:000 | End: 11:25:17.501:000 Pos: 0.00:00:03337:795 ' Time: 11:24:46 356:795 Date: Friday, Apri 8, 2022

[CEEHE 1 4 » W EEBETH] 6 & o o b b X & 12 6

1uuu:ui __;_______..———""-_—
g 700, _-_____..-—'--
250:07 ______--—'"'_'-
ool ___-"-__._-—-'--
40.07 [
% 30.0
.0 g‘
4 YT Chart
4 Ii_,y, Position
E Conveyor.5etPos
0 Label.5etPos
4 Ii_,y, Velocity
HY Conveyor.SetVelo
0 Label SetVelo
4 Ii_,y, State
E MAIMN. ConveyorState
0 MAIN. LabelDriveState
Figure 13: Timing diagram of labeling example with legend
TC2 Training — Application Example for Motion Control © PLCopen (2022)

Vv0.99 June 30, 2022 page 33/46

PLCopen’

for efficiency in automation

8 Example with Cam and Gear
8.1. Application description

This is a simple demonstration of an application with a master axis moving at a fixed speed, a second axis as
CAM slave and a third Gear slave to demonstrate the implementation of axes synchronization with OOP.

8.2. Classical Programming example

There are three drives, namely a MasterDrive, a CamDrive and a GearDrive. The first step is switching on
the power. The CamDrive is linked to the Master Drive via the CamTableSelect and CamIn. The GearDrive
is connected via the GearlIn. Once both slave axes are ready (InSync and InGear with the master axis) as
well as the master axis, the master axis starts moving with the Velocity, and both slave axes follow. A
classical implementation of the example in FBD is depicted in Figure 14:.

Start

Camilove

MC_Camin

TableSet

P — Mastern Master |+
O Shveln Siave|~
Tabie Camin < CanTableln CanTable =

Axis2_Power
R Periodic Busy |- o L
o e o - |-
[SlaveAbsolute Error [+ |I|-]: -
e Vi Length ErroriD |+ StaveOrset Error |«
Ermen e M [T —jmsieseans Error |+
Error |+ SiavePosiions. EndOProfie |-

[Wec Typecamlinear

Axis3_Power MC_Gearln
MC_Power

EnableNagative.

ive
TRUE EnabisPostive Vaid |-
Em

Figure 14: Classical FBD implementation of a synchronization example with three drives

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 34/46

PLCopen’

for efficiency in automation

8.3. Conversion to OOP

The synchronization example is converted to OOP using the interfaces, ENUMS and STRUCTs introduced
in this document. The declaration part of the main program is depicted in Figure 15: It contains the
hardware definitions, states of the drives and commands to enable the synchronization of the two slave axes
with the master axis. For the synchronization, the defined interface itfSynchronizedAxisCommand is used for
controlling the CamDrive (CamlIn) and GearDrive (GearIn). The implementation parts of the different drives
are depicted in Figure 16: MasterDrive at top, CamDrive in the middle and GearDrive at the bottom.

The example illustrates that it is relatively simple to implement synchronized drives with the commands
provided by the newly defined interface.

PROGRAM CamGearExample

VAR
MasterDrive : Axis;
CamDrive : Axis;
GearDrive : Axis;
Table : CamTable;
TableData : MC CAM REF;
Velocity : REAL := 5;

CamState : INT := 07
GearState : INT := 0;

Start : BOOL := FALSE;

MasterMove : itfCommand;

TableSet : itfCommand;

CamMowve : itfSynchronizedhxisCommand;

GearMove : itfSynchronizedixisCommand;
END VAR

Figure 15: Variable declaration part of the synchronization example’s main program

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 35/46

PLCopen’

for efficiency in automation

CASE MasterState OF
IF Start THEN
MasterState := MasterState + 1;
END_IF

: Power On
MasterDrive.Power (Enable: EnablePositive:
IF MasterDrive.Status = RXTS_STATUS.Standstill THEN
MasterState := MasterState + 15
END_IF

Enablellegative:

MasterMove :
MasterState := MasterState + l:
END_IF

= MasterDrive.MoveVelocity(Velocity:=Velocity, RAcceleration:=0, Deceleration:

Jerk:=0, Direction:=MC Direction.mcPositiveDirection, BufferMode:=MC BUFFER MODE.mcRborting):

g g
IF NOT Starc THEN
MasterMove:= MasterDrive.Halt (Deceleration:=0, Jerk:

0, BufferMode:=MC_BUFFER_MODE.mcAborting):

MasterState := MasterState + 1;
END_IF
4 Stopping
IF NOT MastexMove.Done THEN
MasterState := MasterState + 1;
END_IF

MasterDrive.Power (Enable: , EnablePositive
IF MasterDrive.Status = RXIS STATUS.Disabled THEN
MasterState i= 07
END_IF
END_CASE

EnableNegative

IF Start THEN
CamState := CamState + 17
END_IF

EnaklePositive: EnakleNegative:

IF CamDrive.Status = RXIS_STATUS.Standstill AND MasterDrive.Status
TableSet := Table.Select(CamTable:=TakleData, Pericdic:
CamState := CamState + 17

END_IF

E)i
= RXI5_STATUS.Standstill THEN
Masterhbsclute: SlaveRbsolute:

IF TabkleSet.Done THEN

CarMove := CamDrive.CamIn(Master:=MasterDrive, MasterOffset:=0, SlaveOffset:=0, MasterScaling:=1, SlaveScaling:=1, MasterStartDistance:=0, MasterSyncPosition:
StartMode:=MC_StartMode.mcRelative, MasterValueSource:=MC Source.mcSetValue,Camlable:=Table, BufferMode:=MC_ BUFFER MODE.mchborting);
CamState := CamState + 17
END_IF
EL nchronized
IF NOT Start THEN
CamDrive.Release();
CamState := CamState + 17
END_IF
CamDrive.Power (Enable: EnabklePositive EnableNegative
IF CamDrive.Status = RXIS_STATUS.Disabled THEN
CamState := 07
END_IF
END_CASE
CASE GearState OF
IF Start THEN
GearState := GearState + 1;
END_IF
GearDrive.Power (Enable: E, EnablePositive: EnableNegative:=T
IF GearDrive.Status = AXIS_STATUS.Standstill AND MasterDriwe.Status = RXIS_STATUS.Standstill THEN
GearMove := GearDrive.GearIn(Master:=MasterDrive, Ratio:=2, MasterValueSource:=MC Source.mcSetValue,Acceleration:=0, Deceleration:=0, Jerk:=0, BufferMode:=MC BUFFER MODE.mcZborting):
GearState := GearState + 1;
END_IF
IF NOT Start THEN
GearDrive.Release() ;
GearState := GearState + 17

END_IF

GearDrive.Power (Enabli , EnablePositive:
IF GearDrive.Status = AXIS STATUS.Disabled THEN
GearState := 0;
END_IF
END_CASE

, EnableNegatiwve:

Figure 16: Implementation of the three drives (each with a state machine in ST)

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 36/46

PLCopen’

for efficiency in automation

Appendix 1: Porting “Functions blocks for motion control: Part 4-
Coordinated Motion” into OOP

1 Goal

This Appendix presents the OOP version of the “Part 4 — Coordinated motion”, Version 1.0, motion control standard. It follows the
same architecture and principles as the Part 1 & 2 conversion with the itfGroup interface and command interfaces. Please read the
porting document for Part 1 & 2 first.

1.1. Coordinate interface

The current group position is defined as an array. This is very good for two- or three-axes cartesian groups, but it is confusing and
possibly insufficient for larger groups. For example, a five-axes system will have distances and rotations in the same array, which
feels like mixing apples and oranges. A six-axes robot in PCS coordinate system needs a configuration information to uniquely
identify its status.

Using an interface for position, velocity and acceleration allows for extensions and different representations depending on the group.

1.1.1. Coordinate system property

To follow proper coding principles, interfaces should be independent and self-contained, so the coordinate interface has to contain
the coordinate system the position is represented in. Using a different coordinate system to a REAL ARRAY would change the
location completely.

So the coordinate system property has been removed from the itfGroup motion commands and transferred to the itfGroupPosition
and itfPath interfaces.

1.1.2. Coordinate transformation

It would be helpful for the itfGroupPosition to be able to transform itself into a different coordinate system. However, the
transformation requires the knowledge of the number of axes and transformation matrixes. Saving this information to the itfPosition
is not user-friendly as it would make the creation of an itfGroupPosition much more complex. And the GroupPosition instance
would save information that belongs to the group instead of the position.

It is easier to add a TransformPosition method in the itfGroup interface to transform a position from one coordinate system to
another.

1.2. Short overview of the Function Blocks of Part 4

Coordinated Function Blocks
MC_AddAxisToGroup
MC_RemoveAxisFromGroup
MC_UngroupAllAxes
MC_GroupReadConfiguration
MC_GroupEnable
MC_GroupDisable
MC_GroupHome
MC_SetKinTransform
MC_SetCartesianTransform
MC_SetCoordinateTransform
MC_ReadKinTransform
MC_ReadCartesianTransform
MC_ReadCoordinateTransform
MC_GroupSetPosition
MC_GroupReadActualPosition
MC_GroupReadActualVelocity

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 37/46

PLCopen’

for efficiency in automation

MC_GroupReadActualAcceleration
MC_GroupStop
MC_GroupHalt
MC_Grouplnterrupt
MC_GroupContinue
MC_GroupReadStatus
MC_GroupReadError
MC_GroupReset
MC_MoveL.inearAbsolute
MC_MoveL inearRelative
MC_MoveCircularAbsolute
MC_MoveCircularRelative
MC_MoveDirectAbsolute
MC_MoveDirectRelative
MC_PathSelect
MC_MovePath
MC_GroupSetOverride

Coordinated
MC_SyncAxisToGroup
MC_SyncGroupToAXxis
MC_SetDynCoordTransform
MC_TrackConveyorbelt
MC_TrackRotaryTable

Table 5: Short overview of the Function Blocks

2 Command interface definitions

2.1. itfGroupCommand: Extends itfCommand

For group motion methods.

2.1.1. Added Methods

METHOD Update : MC_ERROR

VAR_INPUT
Position : itfGroupPosition;
Velocity : REAL;
Acceleration : REAL;
Deceleration : REAL;
Jerk : REAL;

END_VAR

END_METHOD

2.2. itfSynchronizedGroupCommand : Extends itfGroupCommand

For the synchronized to axis motion.

2.2.1. Added Properties

Name Access Type

Description

InSync Read BOOL

TC2 Training — Application Example for Motion Control
Vv0.99 June 30, 2022

© PLCopen (2022)
page 38/46

PLCopen’

for efficiency in automation

3 Coordinate interface definitions

3.1.

itfGroupPosition interface

The interface represents the position of a group in a specific coordinate system. It can be extended to define the names of the axes
more clearly or add configuration parameters for more complex groups such as robotic arms.

3.1.1. Properties
Name Access Type Description
Base Read/Write | REAL ARRAY
CoordinateSystem Read/Write | MC_COORDINATE_SYSTEM

Type

Read

MC_GROUP_POSITION_TYPE

To differentiate the base class from
derivates.

3.2.

itfGroupVelocity interface

The interface represents the velocity of the axes of a group in a specific coordinate system. It can be extended to define more

clearly the names of the axes for more complex groups such as robotic arms.

3.2.1. Properties
Name Access Type Description
Base Read/Write | REAL ARRAY
CoordinateSystem Read/Write | MC_COORDINATE _SYSTEM

Type

Read

MC_GROUP_POSITION_TYPE

To differentiate the base class from
derivates.

3.3.

itfGroupAcceleration interface

The interface represents the acceleration of the axes of a group in a specific coordinate system. It can be extended to define more

clearly the names of the axes for more complex groups such as robotic arms.

3.3.1. Properties
Name Access Type Description
Base Read/Write | REAL ARRAY
CoordinateSystem Read/Write | MC_COORDINATE _SYSTEM

Type

Read

MC_GROUP_POSITION_TYPE

To differentiate the base class from
derivates.

3.4.

itfPath interface definition

3.4.1. Methods

METHOD Select : itfCommand
VAR_INPUT
Data: MC_PATH_DATA REF;
Description: MC_PATH_REF;
END VAR
END_METHOD

TC2 Training — Application Example for Motion Control
Vv0.99 June 30, 2022

© PLCopen (2022)
page 39/46

PLCopen’

for efficiency in automation

4 itfGroup interface

4.1. ENUMs

No. |MC_GROUP_STATUS
mcErrorStop
mcDisabled
mcStandstill)
mcHoming

mcStopping

mcMoving

(1) The name Standby is switched to Standstill in order to use the same name as in the MC_AXIS_STATUS
ENUM

4.2. Properties
4.2.1. Actual values

Name Access | Type
AcsAxes Read itfAxis ARRAY
McsAxes Read itfAxis ARRAY
PcsAxes Read itfAxis ARRAY
AcsPosition Read itfGroupPosition
McsPosition Read itfGroupPosition
PcsPosition Read itfGroupPosition
AcsVelacity Read itfGroupVelocity
McsVelocity Read itfGroupVelocity
PcsVelocity Read itfGroupVelocity
PathVelocity Read REAL
AcsAcceleration Read itfGroupAcceleration
McsAcceleration Read itfGroupAcceleration
PcsAcceleration Read itfGroupAcceleration
PathAcceleration Read REAL
4.2.2. Status
Name Access | Type
Errorld Read MC_ERROR
Status Read MC_GROUP_STATUS
4.2.3. Transform
Name Access | Type
KinTransform Read MC_KIN_TRANSFORM
CartesianTransform Read MC_CARTESIAN_TRANSFORM
CoordinateTransform Read MC_COORDINATE_TRANSFORM
TC2 Training — Application Example for Motion Control © PLCopen (2022)

Vv0.99 June 30, 2022 page 40/46

PLCopen’

for efficiency in automation

4.3. Methods
4.3.1. Transform

METHOD SetKinTransformation : MC_ERROR
VAR_INPUT
KinTransform : MC_KIN_TRANSFORM;
ExecutionMode : MC_EXECUTION_MODE;
END_VAR
END_METHOD

METHOD SetCartesianTransform : MC_ERROR
VAR_INPUT

TransX : REAL;

TransY : REAL,;

TransZ : REAL,;

RotAnglel : REAL;

RotAngle2 : REAL;

RotAngle3 : REAL;

ExecutionMode : MC_EXECUTION_MODE;
END_VAR
END_METHOD

METHOD SetCoordinateTransform : MC_ERROR
VAR_INPUT
CoordTransform : MC_COORDINATE_TRANSFORM,;
ExecutionMode : MC_EXECUTION_MODE;
END_VAR
END_METHOD

METHOD TransformPosition : itfGroupPosition
VAR_INPUT
Position : itfGroupPosition;
TargetCoordSystem : MC_CoordinateSystem;
END_VAR
END_METHOD

METHOD TransformVelocity : itfGroupVelocity
VAR_INPUT
Velocity : itfGroupVelocity;
TargetCoordSystem : MC_CoordinateSystem;
END_VAR
END_METHOD

METHOD TransformAcceleration : itfGroupAcceleration
VAR_INPUT
Acceleration : itfGroupAcceleration;
TargetCoordSystem : MC_CoordinateSystem;
END_VAR
END_METHOD

TC2 Training — Application Example for Motion Control
Vv0.99 June 30, 2022

© PLCopen (2022)
page 41/46

PLCopen’

for efficiency in automation

4.3.2. Control

METHOD AddAxis : MC_ERROR
VAR_INPUT
IdentinGroup: MC_IDENT_REF
Axis: itfAxis
END_VAR
END_METHOD

METHOD RemoveAxis : MC_ERROR
VAR_INPUT

IdentInGroup: MC_IDENT_REF
END_VAR
END_METHOD

METHOD UngroupAllAxes : MC_ERROR
END_METHOD

METHOD Enable : MC_ERROR
END_METHOD

METHOD Disable : MC_ERROR
END_METHOD

METHOD SetPosition : itfCommand
VAR_INPUT

Position: itfGroupPosition;

Relative : BOOL;

BufferMode: MC_BUFFER_MODE;
END_METHOD

METHOD SetOverride : MC_ERROR
VAR_INPUT
VelFactor : REAL;
AccFactor : REAL;
JerkFactor : REAL;
END_VAR_INPUT
END_METHOD

TC2 Training — Application Example for Motion Control
Vv0.99 June 30, 2022

© PLCopen (2022)
page 42/46

PLCopen’

for efficiency in automation

4.3.3. Motion

METHOD Home : itfGroupCommand
VAR_INPUT
Position : itfGroupPosition;
BufferMode: MC_BUFFER_MODE;
END_VAR
END_METHOD

METHOD Stop : itfGroupCommand
VAR_INPUT

Deceleration : REAL;

Jerk : REAL;

BufferMode: MC_BUFFER_MODE;
END_VAR_INPUT

METHOD Halt : itfGroupCommand
VAR_INPUT

Deceleration : REAL;

Jerk : REAL;

BufferMode: MC_BUFFER_MODE;
END_VAR_INPUT

METHOD Interrupt : itfCommand
VAR_INPUT
Deceleration : REAL;
Jerk : REAL;
END_VAR_INPUT

METHOD Continue : itfCommand
VAR_INPUT
END_VAR_INPUT

METHOD Reset : itfCommand
VAR_INPUT
END_VAR_INPUT

METHOD MoveLinearAbsolute : itfGroupCommand
VAR_INPUT

Position : itfGroupPosition;

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode: MC_BUFFER_MODE;

TransitionMode : MC_TRANSITION_MODE;

TransitionParameter : REAL ARRAY;
END_VAR_INPUT

TC2 Training — Application Example for Motion Control
Vv0.99 June 30, 2022

© PLCopen (2022)
page 43/46

PLCopen’

for efficiency in automation

METHOD MoveL.inearRelative : itfGroupCommand
VAR_INPUT

Distance : itfGroupPosition;

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode: MC_BUFFER_MODE;

TransitionMode : MC_TRANSITION_MODE;

TransitionParameter : REAL ARRAY;
END_VAR_INPUT

METHOD MoveCircularAbsolute : itftGroupCommand
VAR_INPUT

CircMode : MC_CIRC_MODE;

AuxPoint : itfGroupPosition;

EndPoint : itfGroupPosition;

PathChoice : MC_CIRC_PATHCHOICE;

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode: MC_BUFFER_MODE;

TransitionMode : MC_TRANSITION_MODE;

TransitionParameter : REAL ARRAY;
END_VAR_INPUT

METHOD MoveCircularRelative : itfGroupCommand
VAR_INPUT

CircMode : MC_CIRC_MODE;

AuxPoint : itfGroupPosition;

EndPoint : itfGroupPosition;

PathChoice : MC_CIRC_PATHCHOICE;

Velocity : REAL;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode: MC_BUFFER_MODE;

TransitionMode : MC_TRANSITION_MODE;

TransitionParameter : REAL ARRAY;
END_VAR_INPUT

METHOD MoveDirectAbsolute : itfGroupCommand
VAR_INPUT
Position : itfGroupPosition;
BufferMode: MC_BUFFER_MODE;
TransitionMode : MC_TRANSITION_MODE;
TransitionParameter : REAL ARRAY;
END_VAR_INPUT

TC2 Training — Application Example for Motion Control
Vv0.99 June 30, 2022

© PLCopen (2022)
page 44/46

PLCopen’

for efficiency in automation

METHOD MoveDirectRelative : itftGroupCommand
VAR_INPUT
Distance : itfGroupPosition;
BufferMode: MC_BUFFER_MODE;
TransitionMode : MC_TRANSITION_MODE;
TransitionParameter : REAL ARRAY;
END_VAR_INPUT

METHOD MovePath : itfCommand
VAR_INPUT
PathData : itfPath;
BufferMode: MC_BUFFER_MODE;
TransitionMode : MC_TRANSITION_MODE;
TransitionParameter : REAL ARRAY;
END_VAR_INPUT

METHOD SyncToAXxis : itfSynchronizedGroupCommand
VAR_INPUT

Master : itfAXxis;

PathData : itfPath;

Mode : MC_PATH_MODE;

TuCNumerator : INT ARRAY;

TuCDenominator : INT ARRAY;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode: MC_BUFFER_MODE;
END_VAR_INPUT

METHOD SetDynCoordTransform : itfCommand
VAR_INPUT

Master : itfGroup;

Coordtransform : MC_COORD_REF;

Mode : MC_PATH_MODE;

CoordSystem : MC_COORDINATE_SYSTEM,;

BufferMode: MC_BUFFER_MODE;
END_VAR_INPUT

METHOD TrackConveyorBelt : itfCommand
VAR_INPUT
ConveyorBelt : itfAxis;
ConveyorBeltOrigin : itfGroupPosition;
InitialObjectPosition : itfGroupPosition;
BufferMode: MC_BUFFER_MODE;
END_VAR_INPUT

METHOD TrackRotaryTable : itfCommand
VAR_INPUT
RotaryTable : itfAxis;
RotaryTableOrigin : itfGroupPosition;
InitialObjectPosition : itfGroupPosition;
BufferMode: MC_BUFFER_MODE;
END_VAR_INPUT

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 45/46

PLCopen’

for efficiency in automation

4.4. itfAxis Extension

4.4.1. Added Methods

METHOD SyncToGroup : itfSynchronizedAxisCommand
VAR_INPUT

Group : itfGroup;

RatioNumerator : INT;

RatioDenominator : UINT;

Acceleration : REAL;

Deceleration : REAL;

Jerk : REAL;

BufferMode: MC_BUFFER_MODE;
END_VAR_INPUT

TC2 Training — Application Example for Motion Control © PLCopen (2022)
Vv0.99 June 30, 2022 page 46/46

